Segmentation of Tissues in Brain MRI Images using Dynamic Neuro-Fuzzy Technique

نویسندگان

  • S.Javeed Hussain
  • Satya Savithri
  • P. V. Sree Devi
چکیده

3Professor, Department of ECE, AU, Vishakapatnam, Andhra Pradesh, India AbstractIn this paper, an efficient technique is proposed for the precise segmentation of normal and pathological tissues in the MRI brain images. The proposed segmentation technique initially performs classification process by utilizing Fuzzy Inference System (FIS) and FFBNN. Both classifiers are utilizing the extracted image features as an input for the classification process. The features that are extracted in two ways from the MRI brain images. The FIS are used to make the classification process by generating the fuzzy rules using extracted features. Five features are extracted from the MRI images: they are two dynamic statistical features and three 2D wavelet decomposition features. In Segmentation, the normal tissues such as WM (White Matter), GM (Gray Matter) and CSF (Cerebrospinal Fluid) are segmented from the normal MRI images and pathological tissues such as Edema and Tumor are segmented from the abnormal images. The noncortical tissues in the normal images are removed by the preprocessing stage. The implementation result shows the efficiency of proposed tissue segmentation technique in segmenting the tissues accurately from the MRI images. The performance of the segmentation technique is evaluated by performance measures such as accuracy, specificity and sensitivity. The performance of segmentation process is analyzed using a defined set of MRI brain image and compared against K-means clustering and Fuzzy ANN based segmentation methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI

Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...

متن کامل

REGION MERGING STRATEGY FOR BRAIN MRI SEGMENTATION USING DEMPSTER-SHAFER THEORY

Detection of brain tissues using magnetic resonance imaging (MRI) is an active and challenging research area in computational neuroscience. Brain MRI artifacts lead to an uncertainty in pixel values. Therefore, brain MRI segmentation is a complicated concern which is tackled by a novel data fusion approach. The proposed algorithm has two main steps. In the first step the brain MRI is divided to...

متن کامل

A Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis

Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...

متن کامل

Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation

Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...

متن کامل

An Improved Implementation of Brain Tumor Detection Using Segmentation Based on Neuro Fuzzy Technique

Implementation of a neuro-fuzzy segmentation process of the MRI data is presented in this study to detect various tissues like white matter, gray matter, csf and tumor. The advantage of hierarchical self organizing map and fuzzy c means algorithms are used to classify the image layer by layer. The lowest level weight vector is achieved by the abstraction level. We have also achieved a higher va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012